PCB基础 当前位置:首页 > 技术支持 > PCB基础 >

深圳pcb抄板FPGA与DSP的高速通信接口设计与实现

 

    TigerSHARC系列DSP芯片与外部进行数据通信主要有两种方式:总线方式和链路口方式。链路口方式更适合于FPGA与DSP之间的实时通信。随着实时信号处理运算量的日益增加,多DSP并行处理的方式被普遍采用,它们共享总线以互相映射存储空间,如果再与FPGA通过总线连接,势必导致FPGA与DSP的总线竞争。同时采用总线方式与FPGA通信,DSP的地址、数据线引脚很多,占用FPGA的I/O引脚资源太多。而采用链路口通信不但能有效缓解DSP总线上的压力,而且传输速度快,与FPGA之间的连线相对也少得多,故链路口方式更适合于FPGA与DSP之间进行实时数据通信。
    参
    考文献[3]给出TS201与TS101的性能比较,但没有针对两者的链路口进行详细介绍,本文对两者的链路口进行了细致的分析和比较。文献[4]所设计的采集系统中,DSP与FGA的通信仅限于FPGA发、TS101收的单工通信;文献[5]给出了FPGA内部没计TS101链路口的框图,但只给出了简单的介绍,无法给设计者以参考。本文采用Altera公司Cyclone系列芯片EP1C12实现了与TS101/TS201两种芯片的链路口的双工通信,并给出了具体的设计实现方法。其中TS101的设计已经成功应用于某信号处理机中。
    1 TS101和TS201的链路口分析与比较
    TS101和TS210都是高性能的浮点处理芯片,目前两者都广泛应用于复杂的信号处理领域。TS201是继TS101之后推出的新型芯片,核时钟最高可达600MHz,其各类性能也相对优于TS101,而且TS201的链路口采用了低压差分信号LVDS技术,功耗更低、抗噪声性能更好。表1列出了两种芯片链路口性能的详细比较,其中TS101核时钟工作在250MHz,TS201核时钟工作在500MHz。
    限于篇幅,TS101、TS201的链路口结构请参阅参考文献[1][2]。由于TS101收发端共用一个通道,所以只能实现半双工通信。而TS201将收发端做成两个独立通道,可实现全双工通信,理论上数据的传输速率可以提高一倍。pcb抄板虽然TS201的链路口收发通道独立,但实际上二者的收发机制大体相同,都是靠收发缓存和移位寄存器收发数据。然而FPGA内部的链路口设计不必拘泥于此,只要符合链路口通信协议并达成通信即可。
    2 FPGA与DSP的链路口通信
    2.1 链路口通信协议分析
    TS101的链路口共有11根引脚,通过8根数据线(LxDAT[70],这里x可以是0、1、2或3,代表TS101或TS201的0号~3号链路口中的一个,以下同)进行数据传输,并采用3根控制线(LxCLKOUT、LxCLKIN、LxDIR)来控制数据传输时钟、通信的握于和数据传输方向。其中LxDIR为通知链路口当前工作状态是接收或发送的输出引脚,可悬空不用。TS201的链路口共24根引脚,接收和发送各12根引脚,通过LVDS形式的数据线(LxDAT_P/N[30])和时钟线(LxCLK_P/N)进行数据传输,并采用LxACK和LxBCMP#(‘#’代表信号低有效)来通知接收准备好和数据块传输结束。
    采用FPGA与DSP通过链路口通信的关键是令双方通信的握手信号达成协议,促使数据传输的进行。实际上,如果考虑TS201的LVDS信号形式已经被转换完毕,则TS101和TS201链路口传输的数据形式是一样的,都是时钟双沿触发的DDR数据,并且每次传输的数据个数都是4个长字(即128bit)的整数倍。鉴于以上两种芯片链路口数据的共同点,所以采用FPGA与两类芯片通信时,接收和发送的数据缓存部分的设计应该是很相近的,只是通信握手信号部分的设计应当分别加以考虑。下面分别给予介绍。