PCB工艺技术 当前位置:首页 > 技术支持 > PCB工艺技术 >

深圳pcb抄板压电传感器的信号调节原理

 

    由于放大器的信号输入为虚拟接地,因此输入电流形成了一种输出电压摆动;并且高频增益由CFB的值设定(RFB 影响减小,在“带宽”部分后面再进行叙述)。请注意,电容越小,增益越大。增益的近似值为:
    还需注意,电路增益根本上并非取决于传感器的电容(Cd),但最好还是注意该值对噪声的影响。
    带宽
    为了能够正确地对放大器进行偏置(为放大器输入偏置电流提供一个DC路径),一个反馈电阻(Rf) 是必需的。在更低频率下,反馈路径的电容电路变为开路,而反馈电阻变为主要电阻,从而有效降低增益。在较高频率下,电容电路的阻抗变得更小,从而有效消除电阻反馈通路的影响。对AC物理激励的最终电路响应(包括传感器的寄生电容)为高通滤波器的响应,其极频为:
    相关信号带宽由应用决定,因此,降低电容增加增益的同时,也需要增加电阻来保持低极频。电路板克隆增加电阻会影响解决方案的其他方面。除影响噪声以外(在“噪声”部分详细介绍),电阻越高,实际实现就越难-难在寻找到现成的电阻,以及保证PCB的线迹到线迹寄生电阻大于RFB本身。如果电路规范允许使用几百兆欧量级的电阻,则表面贴装电阻马上就可以使用,并且不要求使用先进的布局技术(例如使用防护频带等)。
    如前所述,限制电阻值增加的另一个因素是电路偏置。放大器的输入偏置电流通过该电阻形成输出偏置电压。通过选用具有低输入偏置电流的放大器,例如:FET 输入放大器等,可以最小化这种电压。只要反馈电阻器值低于 1GΩ,并且可以利用各级之间的AC耦合来滤波产生的偏置,那么这种放大器的输入偏置电流(一般低于 100pA)就应该没有问题。
    请注意,由于保持高通滤波器低极频存在困难,因此在近DC应用中使用压电传感器也变得越来越困难(尽管传感器本身的漏电流非常小)。
    尽管并非该放大级的组成部分,但也需要在某处添加一个低通滤波器,旨在降低电路对传感器谐振频率下无用信号的响应,同时降低相关频带的总数字化和混叠噪声。
    噪声
    最后,我们需要最大化信噪比(SNR)。在进行仿真以前进行简单的理论噪声分析会有所帮助。图4显示了电荷放大器的主噪声源。输出噪声谱密度可以表示为:
    其中
    图4 电荷放大器的噪声源
    且s = 2πfj.方程式5为电荷放大器的经典噪声解决方案。相对于Cd,Ca一般非常小。因此,方程式5可以简化为:
    实际上,如果考虑使用高通滤波器极频以上频率,则可以进一步减小第二项:
    我们可以使用几种方法来对各种趋势进行分析。极点(RFBCFBS + 1 项)可以被看作是恒定,因为增加RFB会要求降低CFB,反之亦然。从这个角度来看,增加 RFB会增加方程式8的三项。第一项相应的电压噪声会随RFB线性增加;第二项相应的电压噪声也会增加;第三项相应的电压噪声会随RFB的平方根增加,因为 ERFB= ,其中 k=玻耳兹曼常数,而T=凯氏度温度。然而,由于CFB变得更小,增益会随RFB增加(参见方程式3)。随RFB增加而出现的信号增加,与方程式8中前两个噪声项的所有增加相似,但大于最后一个噪声项的增加,从而改善了总SNR.归根结底就是要尽可能多地增加RFB.需要注意的另一个趋势是从噪声角度来看,传感器的寄生电容越多,传感器就越不那么理想。